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Compression of a polymer chain by a small obstacle: The effect of fluctuations
on the escape transition
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We describe the escape transition of an ideal chain compressed between finite-sized obstacles. Three dif-
ferent theoretical methods are used and each provides a similar description of the escape transition, as predicted
by earlier and less detailed mean-field theories. The first two methods show that thermal fluctuations near the
transition can blur what was previously described as a sharp transition. The last method is an exact calculation
of the partition function that shows unambiguously the character of the escape transition. This exact calculation
overcomes the inherent uncertainties associated with previous theory and computer simulation.
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PACS numbels): 36.20.Ey, 61.25.Hg, 46.32x

I. INTRODUCTION than the chain size, but not larger than the fully extended

. . ngth of the chain, then the problem can be cast as a first-
One of the most vigorous research areas in modern so

condensed matter physics over the past decade has been d and escaped

imaging and manipulation of individual polymer chains A recent series of theory and computer simulation papers
[1-3]. This has been made possible by advances in microsaye described this escape transition, the chain energy and
copy, particularly in fluorescence microscopy, atomic forceihe compressive force of end-tethered chains under finite ob-
microscopy, and optical-magnetic tweezers, and has led to &acles. The initial papers were theoretical and considered
number of investigations of single macromolecules, particuchains in good solvent which were compressed by flat-ended
larly those of biological origin, such as DNA and actin. circular cylinders and round-ended cylindgrs-9]. Later the
These kind of experiments have inspired new topics for thetheory was extended to tilted, flat-ended obstacles and ideal
oretical and computational study. One recent topic is thechains[6]. Implicit to these early theory papers was the as-
compression of a surface-tethered polymer chain by an obsumption of single state occupancy, i.e., at any given com-
stacle that is not much larger than the unperturbed chairpression, the chain was assumed to reside exclusively in the
This can occur by compressing a chain that is end-tethered tscaped or in the imprisoned state. This simplifying assump-
a surface with an atomic force microsco@&dM) tip, or by  tion is not valid whenever the difference in energies between
the impaction of a membrane-tethered biopolymer by a celthe two states is small, particularly near the escape transition.
lular object. Several simulation studies have more recently appgdf@d

The deformation of a polymer that is compressed betweet4]. While most of these studies confirm the existence of
two infinite planar plates is well understood: the chain de-chain escape from underneath the obstacle, the simulations
forms uniformly within the narrowing slit and the force that do not recover the sharpness of the transition that was pre-
the chain imposes on the compressing plates grows mondaicted by the mean-field treatment. Indeed, the description of
tonically [4,5]. However, the compression of an end-tetheredthe force profile at or near the escape transition is in ques-
chain by a finite-sized obstacle is very different: the chaintion. The mean-field treatments predict a sharp, discontinu-
deforms nonuniformly and there can be a jump in the com-ous drop in compressive force, while a number of preprints
pression forc¢6—15]. When compressed weakly by a finite- have interpreted computer simulation results in terms of a
sized obstacle, the chain remains fully confined or “impris-flat or constant force profile through the transition region.
oned” under the obstacle. However, at intermediate In this paper we present calculations of the force profile
compressions, when the compression energy is high, th@nd other quantitigsnear the escape transition that refine
chain can reduce its overall energy by forming a stretchedhe coarse-grained mean-field descriptions, are consistent
umbilical tether from the grafting point to the edge of the with previous simulations, but differ from some previous in-
disk so that the remaining monomers in the chain have “esterpretations of the data. Because most of the physics of the
caped” from underneath the compressing obstggiel5]. A problem is contained in the ideal chain case, where there are
jump in the force exerted by the chain upon the obstacle iso excluded volume interactions between monomers, and as
one signature of the transition from an imprisoned chain to dhis is also the simplest case to examine, we focus only upon
partially escaped one. There can be a significant energetideal chains in this paper. Our description is constructed us-
barrier to escape depending upon the radius of the obstacieg three different and independent approaches. The first ap-
relative to the size of the chain. This barrier arises from theproach, described in the following section, is a simple two-
extra energy needed to stretch the chain to the edge of thetate model which, albeit approximate, provides analytic
disk so that at least one monomer can escape. When thierce profiles which are comparable with recent simulation.
barrier is large, i.e., when the disk size is significantly largerThe second approach used is described in Sec. Il and con-

rder transition between two “states” of the chain: impris-
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sists of stochastically generating “squashed” chain configu-experiment, where one has only a single chain compressed
rations using computer simulation. And finally, in Sec. IV under a single obstacle this means that the chain spends a
we numerically evaluate the partition function for finite-sized certain fraction of its time imprisoned and the remainder of
chains underneath finite-sized obstacles. This last calculatidits time escaped. It is of course also possible to imagine
is limited only by the numerical precision of the computer many chains, each compressed under an obstacle with a frac-
and allows us to study the escape transition for finite chaingon of the chains escaped. In the compression case we sim-
via a procedure that is essentially exact. This and the othgsly have a two-state system in which each state can be popu-
approaches of the paper show that a jump in the force profilated, much like the simple two-state models of atoms
does occur with compression. ubiquitous in atomic physics courses.

The mixing between the two states can be estimated by
the partition function, written asZ=exp(—FescapdKaT)

Il. TWO-STATE MODEL AND THE EFFECT +eXp(—Fimprison/KsT). This is not an exact representation of
OF FLUCTUATIONS the partition function as it ignores some prefactors associated

We consider a chain ol statistical monomers, each of With the relative phase space volumes of the two states; how-

sizea. The chain is ideal, end-tethered to a grafting plane€ver. it is a reasonable representation in the spirit of the
and has a natural size that scalesad¢“2 We impose a two-state model. The free energy of the total system is then
finite-sized disk of radius, larger than the size of the chain F=—kgTInZ and the force exerted by the chain on the
but smaller than the elongated dimension of the chah, obstacle is

centered over the grafting point of the chain. The separation pr=

distance between the obstacle and grafting surfakke s H f=———=2kgTLH 2(2H*/H+g)/(1+g), (1)

is decreased, the chain is compressed and we refer de oH

the compression distance. If the radius is sufficiently large o 1 . .
we can consider all chain configurations to be partitione hereg=exp[—2’l:H_3(1—H IH)]. Th,!s force law changes
into two distinct states: imprisoned and escaped. rom f:4kBTLH2 H= atL>H>H" to a weak*er force
The free energy of the imprisoned chain, confined WhoIIyIaW’ f:2k.BTL/H , for compression dlgtancet<H '*HOW
between the plane and compressing cylinder [B] sharply this crossover occurs Hsis varied througtH* de-
pends upon the functiog, which is just the relative popula-

Fimprison/keT=Na?/H?, where here, and in the remainder i ¢ the two states. | icul : ch ol
of the section we neglect numerical prefactors. The free enion 0 e* Vo states. In particu’ag must change rapidly
earH=H* in order for the transition to be sharp. Examin-

ergy of an escaped chain is comprised of the compression . S o
energy ofm monomers in the tethered umbilicaha?/H?2, ing g it is clear this will occur When the*obstacle raqllus is
and the stretching penalty of the umbilical, stretched to th uch larger thar11/2the critical height,/H*>1 or equiva-
edge of the cylinder,2/(ma?). Those monomers that have €Nty whenL>N"*a; that is, when the disk radius is much
escaped from underneath the cylinder suffer a negligiblégrea.ter than t_he unperturbed chain size. ) .
free-energy penalty. Under thermodynamic equilibrium, the, F19ure 1@ is a scaled plot of the force profiles, predicted

chain will shuffle or readjust the number of monomers in thefrom Eq. (1), versus t'he c_ompression distance for three dif.'
rence obstacle radii. It is clear that for an obstacle of di-

tether so as to minimize its energy, and consequently, th ; _ )
9y a y mensionless radiuls/H* =100, compression leads to an es-

energy of the escaped stateFgscapedKgT=2L/H. In the e :
previous theoretical treatments, the chain fluctuates withiff@P€ transition that s very sharp, and that for smaller
H*=10.0, a transition is still

each state; however, at a given compression the chain alwa)(??_sc;[ac'es'l ﬁs for: _exarlnple’ baro, F betacle of di
resides in the state of lowest energy. That is, the populatioff”' ent, although It Is less sharp. For an obstacle of dimen-

of each state is quantized, being either 1 or 0. At Weak%ionless radiud./H* =2.0 the escape transition has almost
compressions, or largél, the imprisoned state has lower

disappeared. In general, for a reasonably sharp transition we
energy,Fimprison< Fescape@nd all chains are imprisoned. As

require obstacles of large radius/H* >10, in agreement
the chain is compressed, br reduced, the imprisoned state with recent simulation resul{43,14]. These force curves are
energy increases until at a critical compressidi}

also reminiscent of those obtained in previous computer
=Na?/2L, the energy of the two states are identical,

simulations[10-12.
Fimprison=Fescape AS the chain is compressed beydrd, This two-state technique can also be used to calculate the
the system jumps suddenly from one state to the othe

'radial size as well as the maximum extent of the chain in the
Across this jump, the free energy is constant, but the radia\fert'.Cal dlrect|_on(or its heighy, for the _system. The average
size of the chain and the force transmitted to the obstacle af@2XImum radial extent for the chain is
discontinuous. This two-state model, without fluctuations be- 1
. . ' R =(1+ V2LH* +gL+gy2LH* —HL 2
tween states, is the basis of the early theory paf@r$). (Rmax)=(1+9) g-rg ) @
However, near the transition the difference in the energyyhjle the average maximum extent in the vertical direction is
between the states is smadif orderkgT), and hence, both
states will be populated to a substantial degree. The transi- (Zmaw =(1+9) " Y(H+gy2LH* —HL). 3
tion will thus often be more gradual than that suggested in
the early theory papers and in accordance with recent simuFhese expressions are obtained from the expected size of a
lation studies. confined random walk, and the escaped random walk,
We can extend the two-state model to include fluctuationsveighted by the relative populations in each case. Figures
between states, allowing both states to be simultaneousli{b) and Xc) are plots of the maximal radial size and maxi-
populated at any given compression. In the usual kind ofnal height, respectively, versus the compression distance.
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FIG. 1. Predictions of the two-state model with fluctuations for a cylinder of radigempressing an end-tethered chain against a
grafting plane at variable compression distahtePredictions are shown for cylinders of three different dimensionless taldii* =100
shown in solid linesL./H* =10 in dashed lines, and/H* =2 in dotted lines. The compression distance, or the height of the slit between
obstacle and grafting plane, is scaled by the critical compression distaticdhe predicted quantities versus compression distanc&are
force, in units ok T/H* and scaled by./H* (b) maximal radial extent of the chain, scaled{z@H*, (c) maximal height of the chain, scaled
by yL/H*, and(d) fraction of monomers that have escaped from underneath the obstacle. In each of these, the escape transition is marked
by sharp changes in the measured quantitield/&t* =1 whenever the obstacle radius is large, iLlgH* =100. But when the obstacle
radius is smallest./H* =2, the measured quantities change gradually with compression distance, and the sharp transition has disappeared.

These mirror what is seen in simulations, but again the tran-
sition only becomes sharp whegrchanges rapidly, i.e., when

the obstacle radius is sufficiently large/H* >10. Finally

we can calculate the fraction of monomers escaped from uns,,

der the obstacle. This is

IIl. STOCHASTIC EVALUATION OF THE
PARTITION FUNCTION

A common technique used in statistical mechanics for the
aluation of partition function and associated averaged

quantities is to generate configurations stochastically on a
computer. Since the initial theoretical stud[&s-9], a num-
ber of these computer simulations have appeared in the lit-
erature[10-14. All of these have been stochastic simula-
tions that generate configurations of chains end-tethered
and is plotted in Fig. ) versus compression distance. underneath a cylindrical obstacle using the Metropolis Monte
Again, we see that the fraction of escaped monomer€arlo method. In this method, successive configurations are
changes nearly discontinuously for large obstacle radii andonstructed through biased, local moves of monomers within
more gradually for smaller obstacles. the chain. This method can be time consuming as the relax-
This two-state model is, of course, approximate. But itation time(or Rouse timgfor a chain ofN monomers scales
provides descriptions that are comparable to simulation andsN?. Thus many local weighted monomer moves must be
it allows us to understand the results simply in terms of twomade to generate a large number of chains with independent
states. A more rigorous approach is to evaluate the completnfigurations. Moreover, there can be a significant
partition function of the chain, explicitly including all de- (>kgT) energy barrier between the imprisoned and escaped
grees of freedom of the chain. This is done in the followingstates, which may further frustrate the Metropolis sampling
two sections, where we evaluate the partition function stoof configurational space. This barrier arises from the extra
chastically and numerically. energy needed to stretch the chain to the edge of the cylinder

<Nescapec(N>:[l_H/(ZH*)]Q/(1+9) (4)



so that at least one monomer can escape and becomes more
significant as the radius of the obstacle is made lage8].
However, if the chain is ideal and modeled as a random
walk, then we can generate independent configurations suc-
cessively and in an unbiased way, sampling configuration
space uniformly. Under high compression, severe entropic
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barriers restrict the sampling of configurations; however, in-
formation can be gleaned cheaply at moderate compression

(a) ‘
The partition function for such a chain in the presence of
hard walls isZy(H) = = a1 configuration€XP(— U/kgT), where the (b)
sum is over all possible configurations of the end-tethered
chain ofN monomers. Since the walls are infinitely hard and :
monomer-monomer interactions are absent, this sum reduces
to the sum over all allowed chain configurations, each of

equal weighting, i.e.Zy(H) =number of allowed configura- FIG. 2. Configurations of chains with=10*, constructed on a
tions. By “allowed configurations” we mean those that do ¢ pjc |attice with one end tethered centrally at the midpoint be-
not penetrate or intersect the grafting plane or compressingyeen the flat ends of two cylinders of radius= 120 lattice units
obstacle. The Helmholtz free energyfs= —kgT In Zy(H), and separated a distanide Shown are the top and side views where
and all of the averages in the system can be calculated byte transparent cylinders are i@ weak compressionH =110
averaging over the configurations. units, and(b) strong compressiorkl =30 lattice units. Each view

We implement this using a more symmetrical geometrycontains four chain configurations, each generated independently as
than the grafting plane and compressing disk of the previoua random walk starting from the fixed tether. The four chains in the
section. Instead, we take two cylinders, each of radius side views have been rotated such that their end-to-end vectors are
whose flat ends are separated by a distadcé\ chain is  coincident, i.e., we plot theirr(z) monomer coordinates where
placed in the space between the flat ends of the cylinderss Vx?+yZ. In this figure, a random number uniformly distributed
with its end centered and fixed midpoint between the cylinon[—0.5,0.9, has been added to the discrete monomer positions to
ders. We construct each chain by “growing” it from the first enhance the images.
fixed monomer on a cubic lattice. Each consecutive mono-
mer is placed discretely and randomly in one of the six cubigational space may be inadequate. Instead we ca@ fxd
lattice sites lying adjacent to the previous monomer’s latticeincreaseT until we get enough successes. This reduces the
site. If at any point, the chain collides with one of the cylin- scatter at high compressions, but tends to increase it at weak
ders, then that configuration is rejected and we begin groweompressions where the configurational space is larger and
ing a new chain. An allowed configuration is a random walkchain configurations can vary more widely. We found that a
of N cubic lattice steps which does not intersect the cylin-combination of these two techniques gives the best results.
ders. Of course we cannot generate all of the allowed conFor a chain olN=10 000 monomers, we ensure that we have
figurations in this way; there are simply too many. However,at least 5000 successful random walks, as well as at least
since the free energy is only defined up to a constant it i90000 attempted walks. This produces reasonable sample
clear that we can replace the partition function defined aboveizes and averages. However, the minimum number of suc-
by a new partition functio@y(H)=Zy(H)/Zy(*), whichis  cessful random walks becomes insufficient and very difficult
simply the fraction of random walk@®ut of all possible ran- to obtain at very small compressions where successful ran-
dom walkg that do not penetrate the walls. We can estimatadlom walks become very rare. At such high compression it is
this by makingT attempts at generating a random walk sonecessary to bias the sampling technique, which we do not
thatZy(H)=Q/T, whereQ is the number of successful ran- do here.
dom walks, that is random walks &f steps which do not This stochastic method allows us to generate many lattice-
penetrate the boundaries. Provided our number of attempts im|sed chains, confined between the flat ends of cylinders of
large, the quantityr = —kgT In(Q/T) is a good approxima- radiusL=50, 120, and 1000 lattice units and separated a
tion to the free energy. Moreover, our successful randonvariable distancesl, apart. Figure 2 shows four typical chain
walks represent an unbiased sample of the chain configur&onfigurations from both top and side views, sandwiched be-
tions over which we can construct descriptive averages, sudiween two cylinders, at weak compressiontb+ 110 lattice
as the average maximal radial extent of the chain and thanits, and at strong compression lde=30 units. Note that
average maximal height of the chain. the weakly compressed chains are imprisoned: they are

It is important to ensure that we have constructed an adbarely distorted from their isotropic trajectories. However,
equate sampling of configuration space such that the fractiothe strongly compressed chains have escaped through the
of successful walksQ/T, is representative of the entire con- formation of highly stretched, and radially oriented umbilical
figurational space of the chain. First, we canTixhe num- tethers. These chains, along with at least 5000 others gener-
ber of attempted chain growths and count the number obted at each specified compression distance are used to con-
successful random walk]. This has the advantage that at struct averaged chain properties, namely, the chain’s free en-
very high compression almost all of the walks we start terergy, maximal radial extent, and maximal height, as a
minate after only a few steps and the program becomes veifanction of compression.
fast at high compressions. However, if the number of suc- Figure 3a) is the average maximal height of the chain,
cessful walksQ, is small, then the sampling of the configu- measured as the distance from the tethered end, located at the

gl



6910 J. ENNIS, E. M. SEVICK, AND D. R. M. WILLIAMS PRE 60

. 80 ' ' ' ' strong compression. Thus, an average height that decreases
2 ok, monotonically with compression is associated with a com-
k) pletely trapped chain that does not escape, ds=1000 of
T sok Fig. 3(@). A height that decreases identically with large ob-
§ stacles at weak compression, and then sharply increases is
g 50¢ indicative of an escape transition, as in the-120 case.
" 400 Note that in the case of the=50 cylinders, the average
= height of the weakly compressed chain is larger than that of
%o 300 a chain confined between cylinders lof 120 and 1000 at
5 the same compression. The chain height is not as dramati-
% 20, cally reduced by the compressing cylinders as in the case of
T L larger cylinder radii. This is indicative of cylinders of radii
0O 50 100 150 200 250 300 smaller than the natural size of the chain. The chain does not
@ Compression Distance, H escape W|_th compression, there is ho escape transition, and
the nonuniform deformation of the chain, while still evident,
4 ' ' ‘ ' is not as pronounced as that in the cases where escape tran-
sitions occur.
g Figure 3b) is the average maximal radial extent of the
& 3F ] chain, versus compression distance. When the maximal ra-
S dial position exceeds the radii of the cylinders, then we can
s state that, on average, a portion of the chain is outside the
m R 1 radius of the cylinders. Thus, chains that are trapped between
g cyIinde_zrs of radiiL=5Q andL =1000 do not exhibit escape
s transitions as the radial extent scaledlbgoes not trespass
a ! ] . unity with compression. However, the averages indicate that
chains trapped between cylinderslof 120 do undergo an
O rrmmn oo pemmepman- -1 escape transition.
0 50 100 150 200 250 300 F|g_ures 4 and 5 show different chain conﬂgurgtmns at
(b) Compression Distance, H specifiedL andH and allow one to see average chain shape

and monomer density. Note that the quantitative results ob-
FIG. 3. Average properties ford=10* monomer, lattice-based tained from stochastic evaluation of the partition function
chain whose end is centrally placed at the midpoint between the flare, with one exception, very similar to those in the approxi-
ends of two cylinders, separated a variable dist&hcEhe averages mate two-state model with fluctuatiofSec. I). The excep-
are constructed from an ensemble of random walkil efeps on'a  tion is that the stochastic method cannot reliably access the
cubic lattice which do not intersect the compressing cylinders angtrongly compressed region, where the maximum chain di-

plotted against the compression distartdeFor most compression  mensiongheight and radial exteptire expected to plateau.
distances investigated, the average was constructed from at least

5000 successful chain configurations. The average properties are
shown for cylinders of three different radli:= 1000 shown by the
dashed linel. =120 by the solid lines, and=50 by the dotted line

L measured in monomer uni&s The averaged quantities versus  The stochastic generation of random walks does not allow
compression distance af@ maximal height, andb) maximal ra-  ys to construct the free energy to the precision that is re-
dial extent divided by obstacle radius, These figures show that quired to construct force profiles, particularly at intermediate
the average chain confined between cylinder of ratliesl20 un- g strong compression. An alternative approach is to consider
dergoes an escape transition. The average size ®f h&0* chains an ideal chain with a “spring” or bonded potential which is

is larger than the cylinders of radilis=50 and consequently, there g0 cifically selected such that the partition function and as-
Is no sharp escape transition. The cylinders of ragi1000 are o4 qiatad properties can be solved analytically. Here we select

effectively infinite in size with respect to the chain size as thethe bonded potential between monomiesidi -+ 1 to be of
chains are completely confined between the cylinders, deformingghe form[lﬁ]p

uniformly with compression and exhibiting no escape transition un-
der the compressions studied.

IV. EXACT NUMERICAL EVALUATION
OF THE PARTITION FUNCTION

k(IXi+1=xi| +|Yic1i—yil T1zic1—z)), (5)

central midpoint between the cylinders, to the monomer furwhere the coordinates of mononiegre given by X;,Y;,z).

thest removed from the plane which bisects the gap betweehhis potential has the peculiar property that the force be-
the cylinders. A chain height that exceeds the compressiotween the two monomers is constant and the energy in-
distanceH is neither a necessary nor sufficient condition forcreases as their separation increases. The form of this poten-
escape. However, a minimum in the average maximal chaitial implies that the chain is not quite spherically symmetric
height is indicative of nonuniform deformation within the in bulk, but this asymmetry disappears s®. Indeed, a
chain. With compression, the height of the confined portionchain ofN such monomers becomes Gaussiah &screases

of the chain is squeezed and its height decreases; howevemd the properties of the chain will be independent of the
the escaped portion of the chain expands as more monomeeggact form of the bonding potential except on the scale of the
of the chain are squeezed out from between the cylinders aonomer-monomer separation. The average separadjon,
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FIG. 5. Snapshots of 98 chains, eachM# 1000 monomers
compressed between two transparent cylinders of rddiud0 that
are separated a distanide= 10 apart and viewed from the top of the
cylinders. We have added a random numbguniformly distrib-
uted on[—0.5, 0.4, to the discrete monomer positions to enhance
the images. These chains represent the subset of chains which have
escaped, i.e., those which have at least one monomer outside of the
cylinder radii. We have also rotated each chain so that the first
escaped monomer of all chains is located at a prescribed point. This

FIG. 4. Snapshots of 200 lattice-grown chains, eachNof allows us to discern the average shape of the chain from the mono-
=100 monomers, compressed between two transparent cylinders ofer density. It is clear that the imprisoned monomers form a highly
radii L=12 separated a variable distartdeEach point corresponds stretched tether and the escaped monomers form a fairly isotropic
to the location of a monomer and collectively describes the ex+andom walk.
pected density of monomers. We have added a random nueber
uniformly distributed on[—0.5, 0.5, to the discrete monomer po- The partition function for the chain is then given by
sitions to enhance the images. Side and top views are given for No1
three different compression distancéar H=20, (b) H=10, and
(c) H=4. In (a) we have weak compression and the monomers are Z(H)= J' cee f ex;{ — Bk Zl ([Xi+1=xil
mainly located near the center of the circle. The monomer density is A An o
largest at the center, because the first monomer is always located at
the center =0 and the density decreases witlas the number of +1z,1—z))
possible monomer positions scalesrasn (b) the chain is more

compressed and has expanded slightly, but is still rarely escaped. Inh A is the all d f . I
(c) escape has occurred. There is still a central dense region, ayNereA; Is the allowed area for monomer(i.e., all area

though this is much reduced in size. This is surrounded by a les&Part from|x| <L and|z|>H/2), and 5= 1/(kgT). If one

dense region, followed by a more dense halo of escaped monomeféarts to evaluate theandz integrals in Eq/(6), progressing
outside the circle. through each of the monomers beginning witk 2, the

structural form of the solution becomes apparent. After the
between bonded monomers a$=6(ksT/k)?; the average coordinates of monoméhave been integrated out, the terms
end-to-end dista?ce @yN—1; and the radius of gyration, of the resulting expression are all of the form
Ry, is given byRg=(N— 1/N)a?/6. The use of such a bond- exp(* BK% 1| = BKZz 1))z« 1]"%+ 1™ multiplied by coeffi-
ing potential for force calculations in a slit has been thor-cients that depend oA andL, and wherem andn are inte-
oughly examined in an earlier paper by one of the authorgers between 0 arid- 2. These coefficients can be expressed
[16]. ) ) . in recurrence relations, which in turn can be used to obtain
We can construct an analytic expression for the partitionya\ytic results foz(H) and its derived quantities such as
function of such a chain, end-tethered and compressed bgg 5 essive force. The detail of this algebraically compli-

tween finite obstacles. The obstacle geometry is _S|m|Iar tQated procedure and the resulting expressions are given in
that of Sec. lll, except that we reduce the dimension of th%he Appendix

problem from 3 to 2. This reduction in dimension is neces- We can evaluate the partition function, and its derivative

sary only to keep the complexity of the analytic solution . ) : )
minimal. We thus consider compression of a chain betwee?ﬁ‘”th respect toH, as functions O.H.’ L, a_nda by |terat|ve_ly
two rectangles. Thé=1 monomer is fixed at thex(z) ori- evaluating the recurrences for finikeusing a mathematical

gin, selected to be radially centered and midpoint betwee®!9€bra package. However, this requieN”) storage, and
the two obstacles. The two impenetrable obstacles exclud@ecomes impractical with large number of monoméfsA
monomers from the region|<L, z>H/2 and|x|<L, z  Mmore efficient implementation is to fix th._e valuesl-d)_famdL, _

< —H/2, so that the compression distance or slit separatio@nd evaluate the recurrences numerically. This requires
is H and the half-width of the obstacle Is Thus the two ~O(N*) time but onlyO(N?) storage. A simpleORTRAN90
dimensional version of the problem is equivalent to a threecode to perform this evaluation is available from the authors
dimensional problem in which the obstacles extend indefi{17]. The main limitation of the numerical scheme is due to
nitely in they direction. the finite precision of computer arithmetic. The region of

[I dzdx, (6)
...N
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FIG. 6. Forcef as a function of compression distandefor a FIG. 7. RMS lateral distance of the end monomer of the chain

chain with N=40 monomers in the two-dimensional compressionfrom the anchoring point foN=40, as a function of separatioH,
problem, using the numerical evaluation of the exact result. ThickCurves as in Fig. 6.

solid line, obstacles half-width=R;; dashed linel. =3Ry; long . . . .
dashed linel =5Ry; dotted-dashed lind, = 7R, thin solid line, and 7, we see that the separation at which there is a transition

L=9R,. in lateral displacement corresponds to a local maximum in
the force. Note that for the escaped chain, the rms average
. . . . extent is about 18, beyond the edge of the slit. Since the
- 9
most Interest ”,] the proplem IS fdﬂ<R9’,a,nd asN |n. problem considered in this section is two dimensional, one
creases there is a growing loss of precision. In ordinary.,, think of the escaped chain as being like a chain anchored

doub!e precision arithmetic, this Iimitis_l to about 40, de- 4t one end to an impenetrable, vertical wihe anchoring
pending somewhat on the value lof This can be extended point being where the chain emerges from the).sfthis

up to aroundN =100 using quadruple precision, but at the 3na15g0us problem is easily solved in the long chain limit,

cost of a significant increase in computation time. and in that case the rms average of the lateral component is

From the partition function, we can evalluate the analyt'CZRescnormal to the wall, wher®,.is the radius of gyration
compressive forcé(H)=—1/Z 4Z(H)/JH. Figure 6 Shows ¢ the part of the chain that has escaped. In this case the
the force f, as a function of the compression distanidefor flexibility of the bond potential means that for sma,
chain with N=40 monomers and various values laf For Resc~Ry

L/Ry=1 the force is monotonically increasing &b de- If one examines the rms average of the vertical compo-
creases. FoL/R,=3 there is a broad local maximum, and pen (in the z direction of the end monomer displacement,
for larger values ot this local maximum becomes sharper, then there is a similar transition, as shown in Fig. 8. If the

and occurs at stronger compres;ion or smadleihis char- .. obstacle is large, i.el,> R, then for weak compressions, or
acteristic shape of the force profile near the escape transitiofy, <H<|  there is a decrease in chain “height” as the

is in accord with the predictions of the two-state model dis--py4in is compressed. When compressed at a criicathich
cussed in Sec. Il. Asl tends to O _the forC(_a tends to a f|n_|te is O(1/L), then the chain can escape and spread out in the
value for thesé\ =40 chains. This is an artifact of the Spring yertical direction. Note that at strong compression or small

potential and the finite numb.er.of monomers; i.e., by apply'separations, the rms average of theomponent is about
ing large enough pressures it is possible to squeeze all the

| ‘ 4R, . Using the analogy discussed above with a chain at-
monomers(other than the anchoring oneut of the slit. A (5ched to a wall, in the long chain limit the rms average of
finite-sized chain with finitely extensible or inextensible

bond d o d T . I ionane vertical component i§2Reosc.
onds would give a divergent force at smail separations. i i 5150 possible to examine the distribution of the posi-

However, the flexible bond potential in E() used in @ i, of the end monomer, and not just the RMS average.
chain with largeN will also yield a divergent force at high

compression.

The coefficients that are found in the evaluation of the
partition function can also provide the analytic description of
the location of the free chain end ior N monomer. Here we
look at the root-mean square displacement of ikeN
monomer from its tetheret=1 end as a function of com-
pression. It is instructive to look at the lateral or
x-displacement separately from the verticakatisplacement
and note how each of these shows the signature of the escape
transition. The root-mean squafens) averagex displace-
ment is shown in Fig. 7 as a function of compression dis- 0.0
tanceH and for the same range of obstacles widthas in 00 02 04 06 08
Fig. 6, again forN=40. As the chain is compressed to a
separatiorH of O(1/L), the chain escapes, and the average FIG. 8. RMS vertical distance of the end monomer of the chain
lateral displacement increases. This transition becomefgom the anchoring point foN=40 as a function of separatioH,
sharper as the obstacle sitg,increases. Comparing Figs. 6 Curves as in Fig. 6.

2.0

- -
o o

Vertical displacement/R,

o
n
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FIG. 9. Distribution of the lateral position of the end monomer  FIG. 11. Distribution of the lateral position of the end monomer
from the anchoring point foN=40 andL=7R,. Thick solid line,  from the anchoring point foN=40 andL=R;. Thick solid line,
HL/R3=2.0; thin solid line, HL/R%=1.5; dashed lineHL/RZ  HL/R3=2.5; thin solid line HL/RZ=2; dashed lineHL/RZ=1.5;
=1. 25 long dashed IlneHL/R2 1. O dotted-dashed ling{ L/Rg long dashed lineHL/R%=1.0; dotted-dashed lingiL/R3= ‘0.5,
=0.5.

slit falls rapidly, and the proportion of chain ends outside the
Again, it is instructive to look at the lateral and vertical com- slit rises. Again the distribution of ends outside the slit re-
ponents of the distribution separation. Figure 9 shows theembles the distribution of ends in the lateral direction for a
distribution in the lateral direction foN=40, L=7Ry and  polymer anchored to a flat wall.
five different separations, correspondingHa./(R, )2 0.5, Having examined the distribution of the end monomer for
1.0, 1.25, 1.5, 2.0. The area under each of the curves is 0.8)e case wheh >R, it is instructive to look at the distri-
since the distribution is symmetric about 0. At the largest  butions forL =Ry andN=40. In this regime we expect that
separation, the end monomer is almost entirely confined tsignificant numbers of monomers will have escaped from
the slit. WhenHL/(Rg)Zzl.S, corresponding roughly to the under the obstacle, even for the case of no compression.
location of the local maximum in the force, there is a smallFigure 11 shows the lateral distribution and Fig. 12 the ver-
proportion of ends outside the slit, and Hsis decreased tical distribution for a set of separations which correspond to
further, this proportion grows rapidly, until &ﬂL/(Rg)Z HL/(Rg)2=O.5, 1, 1.5, 2, 2.5. Here is it evident that even at
=0.5 almost no ends remain in the slit. The distribution oflarge separations, the chain ends penetrate well beyond the
ends outside the slit in the lateral direction resembles that foedge of the slit. Note that the density distribution is continu-
a polymer anchored to a flat wall, as per the analogy disous inx andz, and the discontinuity evident in the lateral
cussed above. direction in Fig. 11 at the edge of the slit arises because of

The corresponding distribution of chain ends in the verti-the integration over the vertical direction. As the separation
cal direction is shown in Fig. 10, again fd&d=40 andL decreases, the chain ends are gradually squeezed out of the
=7Ry. The main graph shows the distribution for ends out-slit, but there is no sharp transition. Observing the distribu-
side the slit {x|>L), while the inset shows the distribution tion in the vertical direction in Fig. 12, it is interesting to
of ends inside the slit k| <L). ForHL/(Ry)?=2.0 and 1.5, note that the spread of monomers outside the slit initially
most of the chain ends are still confined in the slit, where thglecreases ad decreases, as the reduction in slit width re-
density is increasing ds decreases. A is reduced further, stricts thez displacement of the point where the chain can
the chain begins to escape, the density of chain ends in tH#st escape.

0.5 0.4

0.4
0.3 =12

0.3

0.2

pu Ry
PMRg

0.2

0.1

0.1

0.0

0.0

FIG. 10. Distribution of the vertical position of the end mono-  FIG. 12. Distribution of the vertical position of the end mono-
mer from the anchoring point fdd=40 andL=7Ry. Curves asin  mer from the anchoring point fdi=40 andL=Ry. Curves as in
Fig. 9. The main graph shows the distribution for the case where th€ig. 11. The main graph shows the distribution for the case where
end monomer is outside the slix{(>L) and the inset shows the the end-monomer is outside the sljk|>L), and the inset shows
distribution when the end monomer is inside the gl €L). the distribution when the end monomer is inside the $kt<L).
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H*L/RS~3.0i 0.1, allowing for some uncertainty in the ex-
trapolation. The extrapolated value fa¥R,=3 is clearly
lower than the others, since this is in the region where the
transition first appears, and the local maximum in the force is
broad.

Figure 13b) similarly shows the numerical values of
f* Rg/(kBTL3) and the extrapolation to largd. As L in-
creases, the extrapolated values appear to be approaching a
constant value of~0.65+0.03, although the convergence
with L is slower than in Fig. 1&). In both of these graphs, it
is clear that fixingN and varyingL gives misleading results
0.0 0.1 e 02 0.3 as far as the scaling predictions for larjeare concerned,

(@) N since the rate of approach to the langdimit varies with L.
By first extrapolating to larg& we have been able to con-
firm the quantitative validity of the predictions of the two-
state model ag varies.

V. CONCLUSIONS

In this paper we have studied in some detail the compres-
sion of an ideal chain between one or two finite obstacles.
Three different methods and three different geometries have
been used, but in all cases we find evidence of an escape
transition, as predicted by earlier simple theofigés9]. We

0.2 ‘ have shown how thermal fluctuations near the transition can
00 01 02 03 blur what was previously a sharp transition. Most impor-
tantly we have provided an exact calculation of the partition

FIG. 13. Extrapolation of scaled critical compression and criti- function, which shows unambiguously that a maximum and
cal force to the long chain limit, for various values of the obstacleminimum occurs in the force curves as a function of com-
half-width, L/Ry. The symbols give the values obtained from an pression. This calculation is in many ways vital, since it is in
exact numerical evaluation of the partition function for finite chainsprinciple exact, and overcomes all of the difficulties and in-
with up to N=100 monomers. The symbols at 0 on the horizontalherent uncertainties associated with the earlier theories and
scale are the extrapolated values from a least squares fit of a qugomputer simulations. It also lays to rest claims that have
dratic in N~ while the curves are only a visual guide. Solid line occurred in a number of unpublished works, that there is no
and circlesL./Ry=3; dotted line and squareis/Ry=4; dashed line  jymp in the force curve under compression. We note in con-
and diamonds,L/Ry=5; long dashes and triangles/Ry=6;  ¢|uding that our results are valid for the case where the
dotted—dasheq line andzlnverted trlang_lk_ESRg=7. (a ?caled criti- height is the independent variable, and where the f¢ace
cal compressiomi*L/Rg, (b) scaled critical forcé *Ry/(ksTL?).  ther quantitiesare measured for a given height. In this case

the Helmholtz free energy is the appropriate thermodynamic

The force curves obtained fdt=40 show the qualitative potential, and there is a jump in the force at the transition.
features predicted by the two-state model, in particular théther situations can also be realized. For instance, it is pos-
existence of a local maximum and minimum in the forcesible to have force as the independent variable and measure
versus separation curve for large enough values.dfow-  the height. In this case the Gibbs free energy is the appropri-
ever, 40 monomers is still not a long chain and the scalingite potential and then one gets a jump in the height as a
behavior expected iH* is not yet evident. By doing a series function of force[15].
of calculations at a fixed value &f/Ry with values ofN up
to 100, we can extrapolate to the larbyelimit, where the ACKNOWLEDGMENTS

results should be independent of the specific monomer-
monomer potential employed. We can then examine how the DP-R-M.W.acknowledges support from an ARC QEII. The
critical compressionH*, and force,f*, at the local maxi- authors of Refs[13,14] are thanked for providing their in-

mum in the force curve scale with. The two-state model formation prior to publication.

predicts thaH* L/RZ and f* RY/(kgTL?) should be constant
for large enought. APPENDIX

. . % 2

F|g_ure 13a) shows the numerical values of L/Ri(/)zr The exact evaluation of the partition function given in Eq.
L/Rg=3,...,7 andN up to 100, plotted on a scale bf **, () (and its derivativ for a finite chain ofN monomers
along with the extrapolated points for large(these are the  rqceeds as follows. It is convenient to scale the lengths by
points at zero on the hor.|zontal sc}alé’he fﬁgrqpolat|on IS 1/(8k), so that the new monomer positions are given by
done by a least squares fit of a quadratiNin™<, in Qrder to Xinewzﬁkxiold’ etc. The dimensionless half-width of the ob-
capture the upward curvature of the data for fixecand ) ) N ] )
increasingN. As L increases, the extrapolated points for Stacles is then given by= kL, and the dimensionless half-

large N appear to reach and maintain a constant value o$eparation byH= BkH/2. Thus the two obstacles now oc-

f R, MkeT LY
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. " . " . 2 i-2
cupy the regiongx| <L, z>H and|x|<L, z<—H. 1 -
One begins the integrals at the fixed end of the polymer Ay = Ev mEW Anmf9f10+ v E A 1mf10
(i=1). After the coordinates of monomér-1 have been

integrated out, the expression is a functiorepéndx; , and

1
~ ~ i
has the following form. Fofz|<H and|x;| <L, the form is RRYY E AnW of Av Iw—1»

-2 =2
zi|")x | M AL exp(—|zi| — | 22 . 4 4
nZO mE=0| || | I| [ nm F( | I| | I|) BI+1 E 2 ( A f8f2+Blnmf4f2_Clnmf8f5+Dlnmf4f5
=0 m=0

+BL _exp(|z|—|x)+C exp(—|z]+|x; . : '

+ Dy x| zi| + [xi )]
For O<v<i—2,

For |zi|<I:| and|x;|>L the form is
i—2

1 .
_ . B|+1 f (—— i/_ mT+ B " )
Z |z |" x| " EL  exp( —|zi| — | xi|) mEO{ 2l yovL E mio( =

HMl

+Fpmexp|zi| = xi])]. +1g

'vlm+2D fo(—1)" )

For|zi|>l:| and|x;|>L the form is
+f5

1 i—3
~ Pt 2 F'nmfg<—1>“—V”.

2: |z1"IxiI" Gmexp(—[zi] = |xi])]-

HM\

For O<w=i—1,

To perform the next integration in the partition function, - -

these expression are multiplied by exd.,—x|—|z.1 1 1. i

. . : Bow=2, | —fa| =AL,_1F > Alfio
—z|) and integrated oveA; . Collecting terms, the resulting A=o wo W f—w M
expression is again of the above form, and the new coeffi-
cientsAltL, B! etc. obey the following set of recurrence
relations. To reduce the length of the formulas, common sub-
expressions are written &g for some integeq, and thesé,

i—2
4 _Bin,wfl—i_ > Binmflo”-
m=w

expressions are given below after the recurrences, For O<v<i—2 and O<w=<i—1
i-2 i—-2
|+1 2 E (A f1f2+|§f,i 1‘3f2-i-Ci flf5-|—Di fafs < <
= nm n " BIH 2\/ m§:w Bnmf fro(—1)" v__ 2 Bv 1m 10

+Epf1f7+ Fhmfaf7+ Ghnfsf 7). .
"'_2 B nw—1fe(=1)"" V__Bv 1w—1>

For O<v=i-—1, W n=y
-2
Al fol —A L + > Al f 22 . .
"o ,Z‘O{ At g\/ e Coo = E E (—Anmf1f7=Buafafz+ Chnf1fe
1 i i i i i
+1s5 v V—1,m+2 Chmfo +Dnmfsfet Enmfafz+ Frnfafz+ Grnfaf).
n=v
1 i-2 For O<v=i—2,
+f7 V l/fl,m"_nzv Elnmfg)}

i—2 1 i—2
CV,OZ z [_f7(_ i/—l,m+z Alnmfg)
m=0 \4 n=v

For O<w=i—1,

i-3
i/*l,m+ > Cinmfg)
n=v

i—2 i—2 1
A= {f( —AL 1+Z Al flo) +fe|

1 i—2
V i/—l,m_’_ngv Elnme) }

1 . i—2 A
+13 WBln,w—lerZW Blnmflo”- +iz

For O<v=i—1 and O<w=i—1, For O<w=i—2,
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i—2 i—3
Com=2> [f (——CLW 1+2 C, 10(_1)mw)

+f3

1 . -3
— 5 Pnw-1t mZW Dhmflo(—l)’“‘W”-

For O<v<=i—2 and O<w=<i—2,

i—-3 i—3
CI+1 E 2 Cnmf flO( 1)m W

=V m=w
1 i—3
T

1 1,
W Z n,w— 1 VWCV*LW*I’
i—2 i—2
DI+1 20 mzo (Anmf8f7 nmf f7_clnmf8f6+Dlnmf4f6

—Enmfaf 7+ Fomfaf7+ Gnfaf7).

For O<v<i—2,

i—2 1 i—3
Dy o= [—f ( B _ lm+n§v B'nmfg(—l)”_")

i—-3
- _Dv lm+nz Dinmfg(_ 1)nv)
=v

1

i3
+iy __Fi/ 1m+n§=:\/ Finmfg(_l)n\/”-

For O<w=i—2,

i—2 i—3
Do =2, [—f( = Ch- 1+E Cl 1o<—1>mW)

n=0

1 -
+f4 _len,w—l—FmgW Dlnmflo(_l)m_w)}-

For O<v=i—2 and 6xw=<i—2,

i-3 i—-3

D|+1 E 2 D gflo(_l)n+m—v—w

113
Y Dy_qmfi( =)™ ™
m=w
113 o
_v_vng\, nw-1fa(=1) +_Dv 1w—1>

i—2 i-2
Eic;,rol:nzO mZ=o (Ahmfafart Bhmfaf1a+ Chnfafao

+ D} nfaf 1o+ Epmfafaat Fomfafis+ Ghnfsf19).

For O<v<i—1,

i—2 1 i—2
Eyo= Z fll(\_/ i/—l,m+n§::\/ Alnme)
1 | i—-3 |
+f12 ; vfl,m+nzV Cnmf9
1
+fpq = +E E ”
V
For O<ws=i—1,
i—2 i—2
Elo,+wlzn§=:0 [fl _Eln,w71+m§=:W Elnmflo)
1 i—3
+1f3 WFIn,w—PLsz Flnmf10>
i—2
+fg Glnw 1T 2 G 10”
For O<vs=i—1 and O0kw=<i—1,
i—-2 i—-2
|+1 zvmg Enm 9f10+_ 2 Ev 1m
122 1
+WEEnw 1f+ vlw 1
i—-2 i—-2
FI+1 20 mzo( Anm]c f11'}'Bnmf f11 Cnmf8f12

+ Dy faf 12~ Enmfaf1a+ Fhmfaf 13+ Ghfaf19).

For O<v=i—2,

i—2 i-3
1 . )
Fvo= > [Hl( - ;Bi/—l,m+gv Blnmfg(_l)n_v)

1

+f12 _VDL lm+2 D 9(_1)nv>
1 i—3

+f, ——FV 1m+n§v F'nmfg(—l)”_"”.

For O<w=i—2,

i—2 i—-2
1 :
Fow =2 [—fg(wE'n,w_ﬁE E'nmflo)
n=0 m=w

i-3
Fhw-1t mZ:W Flnmflo)

1
+f4 W

+fg

1 i—2
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For O<v<=i—2 and Oxw=i—2,

PRE 60



PRE 60 COMPRESSION OF A POLYMER CHAIN BY A SMAL . ..

i-3 i—-3

Fin'= 2 E Flmfofid(—1)"" V—— E Foo1mf10

_ 1
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Gitie é:i:

mf 14f 137+ Bif 15f 12+ Chimf 14f 12
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m=0 V
For O<w=i—1,

i—2 n i—2
G'+1 ngo {fm(wEln,w—l_’_mEW Elnmflo)

i-3
_Fln,wfl"‘ngw Flnmflo)

+f15

+f16

1 i—2
WGIn,w—ﬁmEW Glnmflo) }
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i—-2 i-2
GI+1 E E Gnm 9f10+_ E Gv 1m

=V M=W
i—2
1
"’WE an 1f9+ Vo lw-1

where the subexpressiofig are given by

fq on e

m!
fa om 7
AL (—1)"n!

T+l on+1

ﬁn+l (_1)nn!
4:n+1 on+1

I:m+l (_1)mm|

f5:m-i-l_ om+1 ’
I:m+l (_1)mm|
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m+1 2m+1
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fo=exp— 2L)E P —
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8= exp(— )2 0 P i)l
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fo= Snviiyy
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2mfw+lw!
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f16:f8+W n+1

The recurrences for the coefficients begin wiith3, for

which the coefficients are
1 -1 . -
Ag,ozl_ Ee*2H+ Ze*ZL*2H1
3 _ a3
Al,O_ Al,l_ 11

l ~
3 _1__4a"2H
AS=1-5e M,

COO D 1 —2L 2H

1 -1 -
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Eioz Eg,lz Ei,lz 1,

1 - - - -
F3 — _e—ZH_ _e—2H+_e—2L—2H’

00 4 2 4
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2 2 2
1 -~ 1 -
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The partition function in Eq(6) can now be written as

N-2 N-2
Z:(Bk)72N20 mE:O (ANuf 10f 20+ Bhimf 21 20+ Chinf 10 22

+Dpinf 21 20 Enf 10f 18+ Fvf 22f 167 Gmf 177 10),
(A1)
where

n

A H—Pn!
fi,=2expg —H —_—
r=2exf—H) 2 m

m

-~ L™=Pm!
fige=2exgd—L —_—
18 «f )pZO m—p)i

f10=2n! =147,
f20:2m! _f181
n

R Sin—p(_1)P

p=o (n—p)! —2nt (=D
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m

. LM=P(—1)Pm! -
f22=2 eXF{L)pZO W—Zm!(— 1) .

In order to obtairdZ/dI:L which is needed for calculating

the force, one can differentiate EGA1) with respect toH.
The resulting equation contains derivatives of the coeffi-

cients with respect té, e.g.,dAﬁm/dH, etc. By differenti-
ating the various recurrence relations given above, one ob-
tains recurrence relations for these derivatives. These
recurrences again begin witl 3, the values of the deriva-
tives there being calculated by taking the derivatives with

respect toH of the values of the coefficients at 3. This
procedure is straightforward, although tedious, and to con-
serve space the resulting equations are not given here.

The coefficients foii=N contain the information about
the density distribution of the end monomers of the chain,
which can be obtained without any further calculation. In
order to compute the density distribution of every other
monomer in the chain, and hence the total monomer density,
it would be necessary to derive another set of coefficients
obeying somewhat more complicated recurrences, obtained
by evaluating the partition function by beginning with the
integrals fori =N. The need for additional coefficients arises
because the chain is fixed at one end and not at the other.
Although the calculation is in principle straightforward, the
amount of effort required is more than that already expended
in obtainingZ, and so is not attempted here.

In order to evaluate the above expressions to ot#and

dz/dH, it is useful to rescale the coefficients in order to
prevent their magnitudes from varying too wildly. The fol-
lowing scaling is fairly natural, and leads to some simplifi-
cations in the form of the expressions

— i n'm!
A“vm_An!m p2i—n-m’

where the coefficient on the left-hand side with the bar rep-
resents the scaled version, and similarly for the other coeffi-
cients.
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